The lead of a ball screw defines how far the nut travels per one revolution of the screw. It affects:
Linear speed (mm/rev)
Thrust and effective “mechanical reduction”
Positioning resolution
Back-driving / self-locking behaviour on Z-axes
How your motor torque curve is used
You can think about it in four steps:
Smaller lead (e.g. 2–5 mm):
1 rev = fewer millimetres of travel
Acts like a higher gear reduction
More thrust for the same motor torque
Finer positioning resolution
But for the same motor RPM, linear speed is lower
Larger lead (e.g. 10–20 mm):
1 rev = more millimetres of travel
Acts like a lower gear reduction
Less thrust and lower resolution for the same motor
But higher maximum linear speed at the same RPM
This is the “textbook” mechanical view. In real machines, two more things matter a lot: self-locking on vertical axes and the motor torque curve.
Ball screws are generally efficient and can be back-driven, but lead still changes how easily gravity can move the axis:
Small leads (e.g. 2–5 mm):
Smaller helix angle, more friction per unit of vertical force
With the help of nut friction and motor holding torque, a light or medium Z-axis often behaves almost self-locking – it is hard to push down by hand and less likely to drop quickly when power is off.
Large leads (e.g. 10–20 mm):
Larger helix angle, easier to back-drive
A heavy spindle or Z-axis can slide down under its own weight as soon as power is removed if there is no brake or counterbalance.
Practical guidance:
For vertical Z-axes, especially on machines without brake motors, it is safer to use a smaller lead (4–5 mm) so the axis is less willing to fall when power is lost.
If you choose a large-lead screw on a heavy Z-axis, you should plan for a brake motor, counterweight or gas spring, otherwise a power cut can drop the head onto the workpiece or table.
On paper, a smaller lead always gives more thrust for a given motor torque. But in practice:
Stepper motors lose torque rapidly at high RPM
At 1500–2000 rpm, a typical stepper has much less torque than at 300–600 rpm
To reach a given linear speed with a small lead, the motor must spin much faster:
Example:
4 mm lead at 2000 rpm → 8 m/min
10 mm lead at 800 rpm → 8 m/min
At 2000 rpm the motor torque may be very low, while at 800 rpm it is still in a stronger part of the torque curve.
The result is that for high-speed axes, a larger lead with lower motor RPM can actually deliver more usable thrust and better reliability than a small lead forced to spin very fast.
This is especially true for:
Long axes where screw critical speed limits RPM
Systems without high-voltage or high-current drivers to support very high motor speeds
Precision + high thrust, moderate speed:
Small lead (e.g. 2–5 mm) is ideal when you want high resolution and don’t need extreme rapid speeds.
Good for many Z-axes, precision positioning and heavier but slower axes.
General CNC X/Y axis (desktop to mid-size):
Leads around 5–10 mm are commonly used.
5 mm gives a nice balance for many SFU1605 axes.
10 mm can be good for light but fast gantries when paired with a strong motor.
Vertical Z-axis without brake motor:
Prefer smaller leads like 2–5 mm to reduce back-driving.
If using 10–20 mm lead on a heavy head, plan for a brake or counterbalance.
In all cases, try to design so that the motor runs in the “plateau” region of its torque curve (not at the extreme high-RPM tail), and choose the lead accordingly instead of only looking at a simple “speed vs thrust” formula.