The critical speed of a ball screw is the rotational speed at which the screw starts to resonate and “whip" like a jump rope. It depends mainly on the screw diameter, unsupported length, and end support condition.
You can evaluate it in three steps:
As a practical example, take a common SFU1605 screw with standard fixed–supported (BK12/BF12) mounts:
Up to ~1000 mm: Usually safe to run in the 2000–3000 rpm range.
1000–1500 mm: Becomes a warning zone. It is safer to limit the top speed to 800–1000 rpm.
Longer than 1500 mm: The risk of whipping increases significantly. You must calculate the specific limit or upgrade the design.
The critical speed is inversely proportional to the square of the unsupported length.
Physics: If you double the length, the allowable speed drops to one quarter.
This is why long, thin screws are so difficult to spin fast. Even a small reduction in unsupported length (minimizing overhang) can produce a big improvement in permitted RPM.
Option A – Larger Diameter (Most Direct):
Stiffness grows with diameter. Upgrading from 16 mm to 20 mm or 25 mm significantly increases stiffness, allowing higher speeds for the same length.
Option B – Improve End Supports (Most Economical):
Standard mounts are usually Fixed–Supported. If you upgrade to Fixed–Fixed (fixing both ends with BK units and applying tension/stretching to the screw), the critical speed can increase by ~50%.
Note: This requires precise mounting alignment.
Option C – Rotating Nut (Ultimate Solution for Long Axes):
Once travel exceeds 2–3 meters, spinning the screw becomes impractical.
The solution is to keep the screw stationary and rotate the nut (using a rotating nut assembly). Since the screw doesn't spin, there is no whipping, allowing for high speeds over very long distances.